77545 Poikilitic Impact Melt Breccia 29.5 grams

Figure 1: Photo of 77545 showing large vesicles. S73-31348. Sample is 3 cm. across.

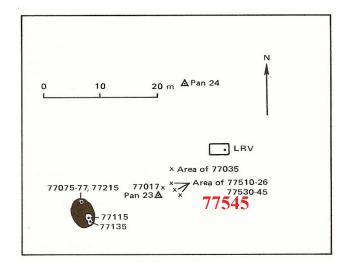


Figure 2: Map of station 7, Apollo 17.

Introduction

Sample 77545 was collected as a rake sample from the soil at station 7 (figure 2). It is a vesicular impact melt breccia similar in texture and composition to 77135, collected from the large boulder nearby. This sample of impact melt has large vesicles (figure 1).

Petrography

The texture of 77545 is poikiloblastic with interlocking irregular pigeonite oikocrysts enclosing laths and tablets of plagioclase and minor olivine (figure 3). Ilmenite is also poikilitic. Mineral clasts are abundant (mostly plagioclase), but lithic clasts are rare. Warner et al. (1977) give the mineral mode of the matrix of 77545 as 53.2% plagioclase, 44% mafic and 1.6% ilmenite.

The composition of pyroxene and olivine is given in figure 4. Plagioclase is $An_{82.98}$. Warner et al. (1978)

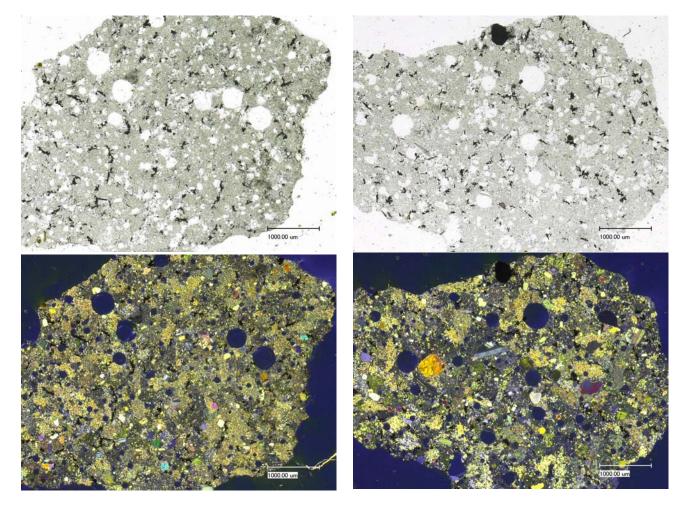


Figure 3a: Photomicrographs of thin section 77545,6 by C Meyer @50x.

Figure 3b: Photomicrographs of thin section 77545,7 by C Meyer @50x.

also report the composition of ilmenite, chromite and armalcolite.

Significant clast

A large angular clast of olivine was studied by Warner et al. (1977). The clast has a granoblastic texture, with mm size olivine grains intersecting at near 120 deg triple junctions. The olivine in the clast is Fo_{89} and there are chromite grains located along the olivine grain boundaries.

Chemistry

The analysis by Wasson et al. (1977) is similar to that for 77135 (figure 5).

Processing

77545 has been chipped, not sawn. There are 6 thin sections.

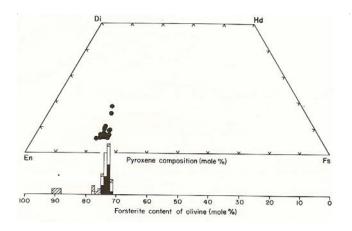


Figure 4: Pyroxene and olivine composition of matrix of 77545 (Warner et al. 1977).

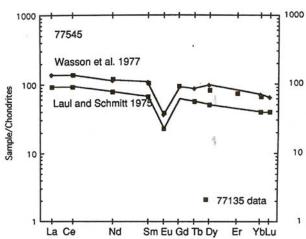


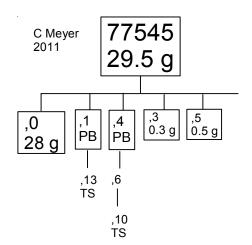
Figure 5: Normalized rare-earth-element diagram for 77545

Mineral Mode (Warner et al. 1977)

	Vol. %
Matrix	74.6
Mineral clasts	9.4
Lithic clasts	16

Mineral clasts

Plagioclase 6.7 Olivine/Pyroxene 2.7 Opaque Metal/troilite


Other

Lithic Clasts

ANT	14.9
Devit. Anorthosite	0.9
Breccia	
Other	0.2

Percent of matrix

Plagioclase	53.2
Olivine/pyroxene	44
Opaque	1.6
Metal/troilite	0.2
Other	1

Lunar Sample Compendium C Meyer 2011

Table 1. Chemical composition of 77545.

reference weight SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	Laul75		Warner77	Wasson77		
	1.2 10.9 10.3 0.11 10 6.6 0.47 0.14	(a) (a) (a) (a) (a) (a) (a)	10.9 10.3 0.11 10 6.6 0.47	1.5 18.7 8.9 12.93 11 0.71 0.24	1.8 19.8 9.7 0.12 13.8 11.9 0.7 0.29	(a) (a) (a) (a) (a) (a) (a)
Sc ppm V Cr Co Ni	11 70 67 600	(a) (a) (a) (a)	3558	17 1400 13.5 60	17.6 49 1440 17.5 60	(a) (a) (a) (a) (a)
Cu Zn Ga Ge ppb As Se Rb Sr				1.9 5.5 50	5.3 120	
Y Zr Nb Mo Ru Rh Pd ppb	240	(a)		560	590	(a)
Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb Cs ppm				2.8 0.35	10 0.32	
Ba La Ce	220 21.5 55	(a) (a) (a)		340 32.2 82	380 35.7 85	(a) (a) (a)
Pr Nd Sm Eu	35 9.8 1.3	(a) (a) (a)		51 15.4 2	59 15.3 2.15	(a) (a) (a)
Gd Tb Dy Ho	2 12	(a) (a)		3.1 23	3.2 19	(a) (a)
Er Tm Yb Lu Hf Ta W ppb Re ppb	6.3 0.94 8.2 1	(a) (a) (a) (a)		11 1.52 11.8 1.4	11.6 1.62 12.1 1.5	(a) (a) (a) (a)
Os ppb Ir ppb Pt ppb	7	(a)		1 0.8	1.5	(a)
Au ppb Th ppm U ppm technique	3.2 0.9 (a) INAA	(a) (a) (a) A		5.4 1.4	1.5 5.3 1.4	(a) (a) (a)

References for 77545

Butler P. (1973) Lunar Sample Information Catalog Apollo 17. Lunar Receiving Laboratory. MSC 03211 Curator's Catalog. pp. 447.

Laul J.C. and Schmitt R.A. (1975c) Chemical composition of Apollo 17 samples: Boulder breccias (2), rake breccias (8), and others (abs). *Lunar Sci.* VI, 489-491. Lunar Planetary Institute, Houston.

LSPET (1973) Apollo 17 lunar samples: Chemical and petrographic description. *Science* **182**, 659-672.

LSPET (1973) Preliminary Examination of lunar samples. Apollo 17 Preliminary Science Rpt. NASA SP-330. 7-1 – 7-46.

Meyer C. (1994) **Catalog of Apollo 17 rocks**: Volume 4. Curator's Office JSC 26088 pp. 644 76 78

Meyer C. (2010) Lunar Sample Compendium (abs#1016). The 41st Lunar Planet. Sci. Conf. (a). The Woodlands

Muehlberger W.R. and many others (1973) Preliminary Geological Investigation of the Apollo 17 Landing Site. *In* **Apollo 17 Preliminary Science Report.** NASA SP-330. Meyer C. (1994) Catalog of Apollo 17 rocks: Volume 4. Curator's Office JSC 26088 pp. 644

Warner R.D., Taylor G.J. and Keil K. (1977b) Petrology of crystalline matrix breccias from Apollo 17 rake samples. Proc. 8th Lunar Sci. Conf. 1987-2006.

Warner R.D., Keil K., Nehru C.E. and Taylor G.J. (1978) Catalogue of Apollo 17 rake samples from Stations la, 2, 7, and 8. Spec. Publ. #18, UNM Institute of Meteoritics, Albuquerque. 88 pp.

Wasson J.T., Warren P.H., Kallemeyn G.W., McEwing C.E., Mitdefehldt D.W. and Boynton W.V. (1977) SCCRV, a major component of highlands rocks. *Proc.* 8th *Lunar Sci. Conf.* 2237-2252.

Wolfe E.W., Bailey N.G., Lucchitta B.K., Muehlberger W.R., Scott D.H., Sutton R.L and Wilshire H.G. (1981) The geologic investigation of the Taurus-Littrow Valley: Apollo 17 Landing Site. US Geol. Survey Prof. Paper, 1080, pp. 280.